
CRADLE Law and Economics Papers 
About the series 

Influence and 
Counter-Influence in Networks 

By Christophe Bravard, Jacques Durieu, Sudipta Sarangi, and 
Corinne Touati

https://einaudi.cornell.edu/research/cradle/working-paper-series


Influence and Counter-Influence in Networks∗

Christophe Bravarda, Jacques Durieua, Sudipta Sarangib, Corinne Touatic

July 23, 2024

Abstract

We study influence competition between two players: a designer who can shape the pattern

of interaction between a set of agents and influence them, and an adversary who can counter-

influence these agents. Creating the network and influencing agents are both costly activities

for the two players. The final opinion and the vote of the agents depend on how the two

players influence them as well as the opinion of their neighbors. Agent votes determine the

payoffs of the two players and to win the designer must obtain the vote of all the agents. We

begin by assuming that the designer has the better influence technology, and subsequently

relax this assumption. We find that optimal strategies depend on the different costs incurred

by the players, as well as who has the advantage in influence technology. We also study what

happens when links between agents can arise randomly with a known exogenous probability,

taking away some of the designer’s control over the network. We provide conditions under

which the results of the benchmark model are preserved. Next, we modify two additional

assumptions: (1) requiring the designer to only secure a majority of the votes, and (2) allowing

the agents interact for several rounds before casting the final vote. In both cases, the designer

needs fewer resources to win the game.
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1 Introduction

Differences of opinion are a way of life and people frequently try to persuade others to adopt

their way of thinking. In this paper, we model this phenomenon using two players who both

influence a set of agents to vote for their opinion. Imagine, for instance, a politician who

wishes to convince others to vote in favor of her bill, while a rival politician may want to

counter-influence them against the bill. A manager in a firm might want a particular market-

ing strategy, and influence others in its favor while another member might influence others in

favor of a different strategy. Such a phenomenon can also occur in social media. A social

media influencer builds their own network and promotes certain products on it. A rival influ-

encer cannot alter the influencer’s network but can certainly promote other products within the

first influencer’s network. Our model captures another important aspect: agents are not just

influenced by the two players; they are embedded in a network and can also affect each other’s

opinions before they vote.

Consider, for example, the case of a parliamentary assembly where the majority party has a

narrow majority, and the adoption of a specific bill requires a unanimous vote of the members

of this party. Then, the leader of the majority party aims to persuade other party members

to vote for the bill.1 Clearly, he has the ability to influence the opinion of party members on

a particular issue. Moreover, the leader of the majority party has the authority to shape the

interaction pattern among party members by organizing appointments to special committees

or by providing a platform for members to deliberate on relevant issues. He can also organize

work meetings to present the bill and emphasize its importance to specific members of the

party. Then, he can ask participants to contact other party members they are close to and share

information about the bill. Note that the members of the majority party may also be pressured

by opponents of the bill to abstain or vote against it. It is noteworthy that the network in which

politicians are embedded plays a crucial role in their vote. Indeed, many studies point to a

social and mimetic dimension in the determination of legislators’ votes. Each legislator tends

to vote to some extent like the legislators with whom he or she is in contact. For example,

Cohen and Malloy (2014) find that networks play an important role in the behavior of US

senators, especially in close votes. This result underscores the fact that when every vote can be

critical to an outcome, the influence of networks is particularly powerful. Similarly, Battaglini

et al. (2023) find that a legislator is more likely to abstain when the majority of his neighbors

1As underlined by Barber and McCarty (2016, p. 62) and Pearson (2015), in both the U.S. House and the Senate,

party leaders have become increasingly powerful and, as such, can apply greater pressure on members to vote along

party lines (see also Aldrich, 1996, Rohde, 1991).
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abstain.

We consider a model involving two players: a designer (De) and an adversary (Ad). They

engage in a sequential competition, aiming to influence agents in a trinary choice scenario (0,

1 or no opinion). Here, De wants the agents to vote 1, while Ad tries to avoid this outcome.

Thus, the interaction between De and Ad takes the form of a zero-sum game: either De will

win the voting game or Ad will win. Note that neither De nor Ad themselves votes in the

game. De makes two decisions: she sets up the network by forming links between agents,

and influences a subset of them. Then, Ad decides which agents he will influence. Forming

links and exerting influence are both costly activities. The influence activities of De and Ad

determine the initial opinion of agents. Each agent then communicates with his neighbors.

The agent’s final opinion is a convex combination of his initial opinion and the opinions of

his neighbors. Thus, the agents are not simply dummy players. They also play the role of

secondary influencers. Finally, each agent votes on the basis of his final opinion. This type

of rule is commonly employed in models of influence and social learning, where the focus is

often on studying the propagation of influence among non-strategic agents (see Jackson and

Yariv, 2007, Golub and Jackson, 2010, Grabisch et al., 2018).

In our benchmark model, we make the following assumptions. First, De wins the zero-

sum game when all agents vote 1, i.e., De must achieve unanimous support for 1. Second,

when both De and Ad exert influence on an agent, the latter prioritizes De over Ad. This can

be interpreted as the superiority of De in influence technology. Each of these assumptions is

relaxed in a subsequent extension section.

Our first (and main) result concerns the Subgame Perfect Equilibrium (SPNE) of the se-

quential move game where De forms the network and influences agents in the first stage, and

Ad influences agents in the second stage. In particular, we characterize the strategies employed

by De in the SPNE, i.e., her optimal strategies. These strategies depend on the cost of forming

links relative to the cost of influencing agents forDe and the cost of influencing agents forAd.

In particular, if the cost of forming links is high relative to the cost of influencing agents for

De, her optimal strategy is to form no links and influence each agent. The cost of influencing

agents for Ad determines the maximum number of agents he can influence. When this maxi-

mum number of agents is low, the optimal strategy for De is to form a partial-star network. In

such a network, some agents are isolated, they have no links, and some agents, the peripherals,

have a single link with one central agent. De influences the center, the isolated agents, and

some of the peripheral agents. This strategy allows De to benefit from not having to influence

more agents than the maximum number of agents that Ad can influence. When this maximum

number of agents is high, the optimal strategy for De is to form a quasi-core-periphery net-
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work. In such a network, agents in the core are linked among themselves, while each agent

in the periphery has a single link with an agent in the core. In addition, De exclusively exerts

influence on agents within the core. This specific strategy minimizes the number of agents that

De influences, since Ad can influence all the neighbors of each agent that are not influenced

by De.

Our second result serves as a robustness check of our main result, since we allow agents that

are not linked in the original network built by De to interact with positive probability that is

common knowledge. In other words, additional links can randomly appear after De has made

her choices. We provide an upper bound on the probability of unwanted links that allows us to

preserve our main results.

In the extension section, we first allow for repeated interactions among the agents. We show

that, for sufficiently low link formation costs, the number of agents that De must influence in

an optimal strategy is lower than in our benchmark model. Indeed, there are situations where

De only needs to influence one agent to obtain a unanimous vote. Next, we examine the case

where De wins when a majority of the agents vote 1. We establish that the optimal strategies

forDe are qualitatively similar to those of the benchmark model, but less costly, as they involve

either fewer links or a smaller number of agents to influence. Finally, we assume that Ad has

the superior influence technology. Consequently, when an agent is influenced by both De and

Ad, he believes Ad. This assumption considerably modifies De’s optimal strategies. Thus,

De builds either a network where each agent has the same number of neighbors and influences

all the agents, or a network where the agents are divided into two groups and each member

of the first group is influenced by De and forms k links with the other members of his group,

while each member of the other group is not influenced by De and forms k′ < k links with the

agents in the first group.

To the best of our knowledge, this is the first paper to introduce competition influencers.

However, it relates to multiple strands of the existing literature.

In the first strand, network protection is orchestrated by a designer, mirroring the structure

of our model. Dziubiński and Goyal (2013, 2017) focus on the optimal design and defense

of networks, assuming the presence of an intelligent attacker or adversary, akin to our model.

In these models, the designer is responsible for forming links between the agents and must

undertake measures to protect them, ensuring their survival. The designer’s objective is to

maximize the size of connected components in the network obtained as a result of the attacks of

the adversary. Goyal and Vigier (2014) extend the work of Dziubiński and Goyal by allowing

the attacks (or threats) to spread like a contagion. Bravard, Charoin, and Touati (2016) modify

Dziubiński and Goyal’s (2013) model by considering a situation where the adversary targets
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links rather than nodes, and the designer has to protect links rather than nodes. Hoyer and De

Jaegher (2016) also explore a framework in which a designer must build the network with the

objective of maintaining connectivity in the event of potential attacks. In their model, certain

parts of the network remain intrinsically vulnerable: they cannot be protected by the designer.

The authors characterize the optimal networks in the event of links or nodes being removed by

examining different cost ranges. In contrast to these articles, in our model we are interested in

the opinion of each agent. The designer’s objective is not to preserve the connectivity of the

network but to influence (directly or indirectly) the agents. Moreover, in our model the agents

also play a role since they influence each other and their vote determines the final outcome of

the game between influencers.

The second strand of literature involves decentralized protection carried out by individual

agents within the network. Cabrales, Gottardi, and Vega-Redondo (2017) study the propaga-

tion of attacks in networks of financial firms where financial risk can spread between connected

firms. Baccara and Bar-Isaac (2008) explore how the connectivity of criminal networks in-

creases vulnerability because of external threats. Agents make connectivity-related decisions

in these models. In Acemoglu, Malekian, and Ozdaglar (2016) agents are connected but in a

random network. Agents have to invest in protection to be immune which depends on their

links and the probability of being infected in the random network. In Haller and Hoyer (2019)

group members individually sponsor costly links and form an information network. An ad-

versary aims to disrupt the information flow within the network by deleting some of the links.

The authors study how the group as a whole responds to such a common enemy. In contrast

to these papers, we introduce a distinctive perspective with a two-player game involving a de-

signer and an adversary, both focusing on influencing agents rather than maintaining/removing

connectivity.

The third strand of literature focuses on the spread of misinformation through social media.

Bloch et al. (2018) study a situation where there are two types of players: those who are biased

in favor of the message 1 and those who are not biased. Each player can either transmit the

message or block it. Biased players have an interest in transmitting messages that only favor

1, while unbiased players only transmit messages they find credible. Bloch et al. show that

the social network acts as a filter, limiting the spread of untrustworthy messages compared

to a situation where the message would be spread to the entire population by a single sender.

Bravard et al. (2023) modify this framework by assuming that players are aware of the biases of

their neighbors. Acemoglu et al. (2024) present a model of online sharing where agents observe

an article on a social network and decide whether to share it or not. The article may contain

misinformation, and agents gain utility from social media interactions but lose utility if they
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spread misinformation. The agents are not biased, but have different prior beliefs. The authors

analyze the policy that a regulator should adopt to limit the spread of misinformation given that

social media wants to maximize the virality of messages. In contrast to previous work, we want

to model the competition between two players who want to persuade agents in a social network.

Our goal is to explore the optimal strategies of a player who can both shape the interaction

structure of the agents and influence them to resist competing messages. Furthermore, in one

of our extensions we consider that the network is not given or fully controlled by the designer

by letting random links occur.

The rest of the paper is organized as follows. In Section 2, we introduce the model setup.

In Section 3, we establish results for the benchmark model and also present a robustness check

taking into account the possibility of unwanted links. In Section 4, we deal with our three

extensions. We conclude in Section 5. All proofs are provided in the appendix.

2 Model Setup

Let Ja, bK = {` ∈ N, a ≤ ` ≤ b}. Moreover, let bxc and dxe be respectively the largest

integer less than x and the smallest integer greater than x. Further, for every set X , ]X is its

cardinality.

Players and Agents. We assume that there are two players or primary influencers called re-

spectively the Designer, De/she, and the Adversary, Ad/he. Both De and Ad act strategically.

In addition to these two players, there is a set of agents N = J1, nK, n ≥ 4. In the following,

we will describe the behavior of these n agents which is non-strategic in nature.

Networks. We assume that agents are located on an undirected network. An undirected net-

work g is a pair (N , E(g)), where E(g) ⊆ N × N is the set of links. We denote by G[N ]

the set of all networks with N as the set of agents. A link between two agents i and j is

interpreted as the existence of a relationship between these agents. With a slight abuse of no-

tation, we denote by ij the link between agents i and j in g, i.e., i j ∈ E(g). Let A(g) be

an n × n adjacency matrix of the undirected network g, that is, for every (i, j) ∈ N × N ,

Ai,j(g) ∈ {0, 1}, where Ai,j(g) = 1 if and only if ij ∈ E(g). By convention, Ai,i(g) = 0.

Clearly,A(g) is symmetric.

Let Ni(g) = {j ∈ N : i j ∈ E(g)} be the set of neighbors of agent i ∈ N . We say that i is

an isolated agent in g when ]Ni(g) = 0. A path Pi,j(g) between agents i = i0 and j = im, is

a sequence of links of the type i0 i1, . . . , i` i`+1, . . . , im−1 im where each link i` i`+1 ∈ E(g).

The length of a path is the number of links it contains. A cycle is a path where i and j coincide.

A network g is connected if there exists a path between i ∈ N and j ∈ N \ {i} for every pair
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(i, j). A subnetwork g[N ′] = (N ′, E(g[N ′])) of network g is a network such that N ′ ⊆ N
and for i, j ∈ N ′, we have i j ∈ E(g[N ′]) if and only if i j ∈ E(g). The (geodesic) distance

between agents i and j in g, d(i, j; g), is the length of any shortest path joining them.

Let us now present some specific architectures. The empty network, ge, is a network where all

agents have formed no links. In the complete network g, Ai,j(g) = 1 for every i ∈ N and

j ∈ N \ {i}. A star is a network where there is a central agent, ic, who has formed links with

all other agents and there are no links between i and j for i, j ∈ N \ {ic}. Agents inN \ {ic}
are called peripheral agents. A partial-star g is a network whereN admits a partition into two

subsets X and N \ X such that g[X ] is a star and agents in N \ X are isolated in g. We illus-

trate a star in Figure 1 (a), and a partial-star in Figure 1 (b) where X contains all agents colored

white and N \ X contains all agents colored black. Partial-stars with special properties play a

crucial role in our paper. In these particular partial-stars, the center, ic, belongs to a special set

of agents called Y that contains all isolated agents and p agents that are peripheral. Moreover,

all agents in N \ Y are peripheral agents. Thus, in the following definition we need the value

of p and the set Y .

Figure 1: Illustrations of Stars and Partial-stars

Definition 1 For p ∈ J1, n−2K, and Y ⊂ N , g is a (p,Y)-partial-star when it is a partial-star

and Y contains the central agent, ic, p peripheral agents, and all the isolated agents of g.

Note that since g is a partial-star, peripheral agents in Y and N \ Y are only connected to ic.

Let us illustrate this definition with network g1, drawn in Figure 2 (a). Agents colored

white belong to Y = J1, 5K, and agents colored black belong to N \ Y = J6, 13K. We observe

that g1 is a partial-star. The number of peripheral agents in g1[Y], p, is ]J2, 3K = 2. Finally,

each agent in N \ Y is linked to ic.

We now present specific networks called quasi-core-periphery networks that are close to

the core-periphery networks widely used in the literature. In a core-periphery network, the set

of agents is divided into two disjoint subsets: the core and the periphery. Agents in the core

have at least as many neighbors within the core as in the periphery, and agents in the periphery
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Figure 2: Illustrations of (p,Y)-partial-star and (q,Y)-MQC

are only connected to nodes in the core. In a quasi-core-periphery network, all these properties

are preserved, but unlike a star network, not all links involve the same (central) agent. In the

next definition, we present specific quasi-core-periphery networks that minimize the number

of links, given that each member of the core, called Y , has q times more neighbors that belong

to Y than neighbors that belong toN \Y . Moreover, each agent inN \Y is connected to only

one agent belonging to Y .

Definition 2 For q ∈ (0, 1] and Y ⊂ N , g is a (q,Y)-quasi-core-periphery network if g

admits a partition of N into two subsets, Y and N \ Y , called the core and the periphery

respectively, and for every non-isolated i ∈ N , there are j, k ∈ N \ {i}, with Aj,k(g) = 1.

Moreover, the following properties hold:

(Q1) for every j ∈ Y,
∑
`∈Y
Aj,`(g) ≥ q

∑
`∈N\Y

Aj,`(g); and

(Q2) for every j ∈ N \ Y,
∑

j∈Y Ai,j(g) = 1 and
∑

j∈N\Y Ai,j(g) = 0.

A network g is a (q,Y)-minimal-QC, denoted by (q,Y)-MQC, if it is a (q,Y)-quasi-core-

periphery network with a smaller number of links.2

Note that a (q,Y)-MQC is not a partial-star since there are j, k ∈ N \ {i}, with Ajk = 1.

Moreover, we do not exclude the possibility that there are isolated agents in Y . An important

property of (q,Y)-MQC is that there are n−]Y links between agents in Y and agents inN \Y ,

and at least
⌈
q(n−]IDe)

2

⌉
links between agents in IDe.

We claim that g2 in Figure 2 (b) is a (1, J1, 4K)-MQC network. In g2, agents in J1, 4K, colored

2This definition does not imply anything about the existence of (q,X )-MQC networks. In Appendix A.1, we define

a class of networks that are (q,X )-MQC and provide a constructive algorithm that ensures their existence.

8



white belong to Y , and agents in J5, 14K, colored black belong to N \ Y . We have q = 1.

Hence, g2[Y] is connected, and (Q1) holds since each agent in J1, 4K is linked with a number

of agents in J1, 4K that is at least equal to the number of agents in J5, 14K with whom he is

linked. Moreover, (Q2) is satisfied since each agent in J5, 14K is linked with exactly one agent

in J1, 4K. Finally, there is no (1, J1, 4K)-quasi-core-periphery network with a smaller number

of links than g2.

Strategies of the Players. One of the crucial features of our paper concerns the possibilities

for the primary influencers to modify the agents’ initial opinions. In addition, De has the

ability to shape the interaction structure of the agents, i.e., to create the network g. The set of

agents influenced by De is denoted by IDe ⊆ N . Similarly, the set of agents influenced by

Ad is denoted by IAd ⊆ N .

Formally, a strategy for De, s, is a mapping that assigns to N a pair (g[s], IDe[s]) ∈ G[N ]×
2N . When there is no ambiguity, we write (g, IDe) instead of (g[s], IDe[s]). Let SDe be the

set of strategies of player De. SDe is defined as the set of mappings from N to G[N ]× 2N .

Similarly, a strategy for Ad is a mapping, σ that assigns to each pair (g, IDe) a set of agents

IAd ⊆ N . Let SAd be the set of strategies of player Ad, i.e., SAd is defined as the set of

mappings from G[N ]× 2N to 2N .

Given N , every pair of strategies (s, σ) induces a triple (g[s], IDe[s], IAd[σ]), denoted by

(g, IDe, IAd) when there is no ambiguity.

We now present different strategies that play an important role in our analysis. In the complete

influence-empty network strategy, De forms the empty network and influences all agents. In

a (q,Y)-influence-MQC network strategy, De forms a (q,Y)-MQC network and influences

agents in Y . In a (p,Y)-influence-partial-star strategy, De forms a (p,Y)-partial-star and

influences agents in Y .

Initial Opinion of Agents. We assume that before players De and Ad influence agent i, the

latter has no opinion, ∅. If i is influenced neither by De, nor by Ad, his initial opinion, θi,

continues to be ∅.3 If only De (or Ad) influences agent i, then the initial opinion of i is 1

(or 0). Suppose agent i is influenced by both primary influencers, i.e., i ∈ IDe ∪ IAd. Then,

in this game of influence and counter-influence there are only two possibilities: either De

is successful or Ad is successful.4 First, De has a greater ability to influence than Ad (for

instance because of better technology), and θi = 1 when i ∈ IDe∪IAd. This case is presented

3The results obtained in the benchmark model are not qualitatively affected by the assumption that agents have no

initial opinion and maintain this opinion when not influenced.
4We ignore the case where both De and Ad cancel out each other influence. This is akin to analyzing the model

where these players belong to the set of uninfluenced agents and therefore is ignored here.
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in the next section. Second, Ad has a greater ability to influence an agent than De, and θi = 0,

when i ∈ IDe ∪ IAd. This case is examined in the extension section. Thus, in our benchmark

model, the initial opinion of each agent i is given by

θi =


1 if i ∈ IDe,
0 if i ∈ IAd \ IDe,
∅ if i /∈ IDe ∪ IAd.

The n-uple θ = (θi)i∈N summarizes the initial opinion of every agent i ∈ N .

Final Opinion of Agents. Each agent i forms his final opinion by taking into account his own

initial opinion, θi, and the weighted average of his neighbors’ initial opinion. We denote by

N (k,θ) = {j ∈ N : θj = k, k ∈ {∅, 0, 1}} the set of agents with initial opinion k. The

set of neighbors of agent i with k ∈ {∅, 0, 1} as initial opinion is denoted by N k
i (g) = {j ∈

Ni(g) ∩N (k,θ)}. Moreover, when N 0
i (g) ∪N 1

i (g) 6= ∅, let

Θ̄i =
1

]N 0
i (g) + ]N 1

i (g)

∑
j∈N 0

i (g)∪N 1
i (g)

θj

be the weighted average opinion of i’s neighbors. Thus, we assume that i forms his opinion

without considering his neighbors that have no initial opinion, that is agents j ∈ Ni(g) for

whom θj = ∅. We assume that the final opinion of agent i ∈ N , θF
i , is obtained from the

following rule:

θF
i =


(1− α)θi + αΘ̄i if θi 6= ∅ and N 0

i (g) ∪N 1
i (g) 6= ∅,

Θ̄i if θi = ∅ and N 0
i (g) ∪N 1

i (g) 6= ∅,
θi otherwise,

(1)

where α ∈ (12 , 1].5 Note that in Equation (1), if N 0
i (g) ∪ N 1

i (g) = ∅, then agent i’s final

opinion depends only on his initial opinion, i.e., if none of the neighbors of agent i has any

opinion, then agent i considers only his initial opinion. We let θF = (θF
i )i∈N .

Voting behavior of agents. We assume that after all possible influences are taken into account,

each agent votes for an outcome in line with his final opinion. Let vi(θF
i ) be the vote of agent

i, we have

vi(θ
F
i ) =


1 if θF

i ≥ 1/2,

0 if θF
i < 1/2,

∅ if θF
i = ∅.

(2)

5Note that if α < 1
2 , then there is no possibility for an agent i to modify its initial opinion. Hence, we do not

consider this case.
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The vote of agent i can be interpreted as his realized/chosen action. The n-uple v = (v1(θ
F
1), . . . ,

vn(θF
n)) provides the vote of every agent i ∈ N . Following (2), for k ∈ {∅, 0, 1}, we denote

the set of agents who vote k by N (k,v) = {j ∈ N : vj(θ
F
j ) = k}.

Payoff of De and Ad. Forming links and influencing agents are both costly actions. More

precisely, De’s cost function depends on the number of links she forms and the number of

agents she influences. The cost that De incurs when he forms ]E(g) links and influences

]IDe agents is C(]E(g), ]IDe), where C(·, ·) is strictly increasing and convex in each of its

argument. Given that the overall cost function is convex, for simplicity, we sometimes assume

that it is linear in its two components: C(]E(g), ]IDe) = ]E(g)cL + ]IDecDe, where cL > 0

is the unit cost of forming each link, and cDe > 0 is the cost that De incurs for each agent she

influences.

Moreover, we let cAd > 0 be the cost incurred by Ad for each agent he influences. In other

words, the cost function of Ad is linear.6

The benefits of players only depend on the vote of the agents while the costs incurred by each

player only depend on his strategy. Clearly, θF and v are entirely determined by the strategies

of De and Ad, hence we have θF[s, σ] and v[s, σ] . We assume that De wins if and only if

every agent votes 1, an assumption we relax in the extension section. The payoff of De, for

choosing s when Ad chooses σ is

u(v[s, σ]) =


1− C(]E(g), ]IDe) if N (1,v) = N ,

−C(]E(g), ]IDe) otherwise.

(3)

Note that unanimity requires that every agent, even those with no initial opinion, must vote 1.

We assume that the maximal cost incurred by De is always lower than 1, i.e., C
(n(n−1)

2 , n
)

< 1 in order to let her use any possible strategy. Similarly, the payoff of Ad when he chooses

σ and De chooses s is

U(v[s, σ]) =


1− cAd ]IAd if N (1,v) 6= N ,

−cAd ]IAd otherwise.

(4)

Let kAd = b1/cAdc. Clearly, kAd is the maximal number of agents that Ad has an incentive

to influence in our benchmark model. We assume that kAd ≥ 1, therefore, Ad always has an

incentive to influence at least one agent if this guarantees that a unanimous vote for 1 can be

avoided. To sum up, De and Ad have opposite incentives: De wants all agents to vote 1, while

Ad wants at least one agent not to vote 1.

6Our results do not change qualitatively if we assume that the cost of influencing agents forAd is strictly increasing.
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Timing of the Game. There are three stages in this game.

Stage 1. De chooses her strategy: builds the network, and influences a subset of agents.

Stage 2. Ad observes the strategy of De and influences a subset of agents.

Stage 3. Given their initial opinion, agents interact and form their final opinion and vote.

At the end of these three stages, De and Ad obtain their payoffs.

Subgame Perfect Nash Equilibrium (SPNE). An SPNE is a pair (s?, σ?) that prescribes the

following strategic choices. In Stage 2, given network g,Ad plays a best response7 σ? to s(N ):

σ? ∈ arg max
σ∈SAd

{U(v[s, σ])}.

De obtains u(v[s, σ?]) when she chooses s. In Stage 1, De plays s? such that

s? ∈ arg max
s∈SDe

{u(v[s, σ?])}.

Example 1 Criminal Organization vs Police.8 We consider criminals who belong to a hier-

archical organization, with a leader (De), confronted by the police (Ad). The members of the

criminal organization have two choices: be loyal (action 0) to the organization or be disloyal

(action 1). De may use physical coercion to deter disloyalty among members of the organiza-

tion (agents), but the effectiveness of such measures depends onDe’s ability to use surveillance

and pressure to convince disloyal members that they will be punished. Surveillance and pres-

sure can be applied to each agent, but often at a high cost. An alternative strategy for De is

to exert surveillance and pressure only on specific agents and to develop a network among the

members of the organization in order to spread the opinion that his surveillance capacity is

high. This strategy requires that De is able to design, at least in part, the interaction structure

between the agents.9 Clearly, each agent is more likely to remain loyal if he believes De has

a high ability to effectively detect and punish disloyalty. In addition, the criminal organization

is under constant threat from the police, who have the ability to send criminals to prison. As

a result, members of the criminal organization may be pressured by police who want to make

the criminal organization ineffective.

To simplify the analysis, we consider two polar situations in which only one of the two players

is able to punish. Specifically, in situation S1, player De is more powerful than player Ad and

7Since Ad best responds against the strategy chosen by De, his strategy can be interpreted as the worst possibility

that De would face. Hence, De can be seen as an infinitely risk-averse player.
8This example is inspired by Baccara and Bar-Isaac, 2008 .
9This assumption is consistent with the framework of Baccara and Bar-Isaac (2008).
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only De has the ability to punish the members of the criminal organization. By contrast, in

situation S0, only player Ad is able to punish the members of criminal organization. It follows

that θi = 1 means that i has an initial opinion/belief in favor of S1 and θi = 0 means that

agent i has an initial opinion/belief in favor of S0. We assume that De and Ad have the ability

to influence agents’ (initial) beliefs about the occurrence of S1 (and S0), either by exerting

pressure or by monitoring them. In the absence of influence, an agent has no initial opinion.

Moreover, De must win the loyalty of all members of the organization, whereas the deviation

of one agent is enough for the police to achieve their objective. The agents can follow the

decision rule given in Equation (1) or a most sophisticated one as follows. We assume that in

S1 and S0, each agent receives a fixed wage w. Denote by PuDe > 0 and PuAd > 0, the

amount of the punishment imposed by the criminal organization and the police respectively.

The expected payoff of agent i who chooses to be loyal is w − θF
i × PuAd, and his expected

payoff is w− (1− θF
i )×PuDe when he chooses to be disloyal. Clearly, agent i is loyal if and

only if w − θF
i × PuAd ≥ w − (1 − θF

i ) × PuDe, i.e., θF
i

1−θF
i
≥ PuAd

PuDe
. Let PuAd = PuDe.

Then, θF
i

1−θF
i
≥ 1, and agent i chooses loyalty when θF

i >
1
2 as in Equation (2).

3 Model Analysis

Let us begin by providing an example to illustrate the importance of network architectures in

determining how players De and Ad influence the agents. Specifically, we assume that De

takes the architecture of the network as given.

Example 2 Suppose that kAd = n and α = 1 in Equation (1), i.e., only the opinion of the

neighbors matter for the final opinion. The cost function is given by C(]IDe) = ]IDe × cDe,
with 1 − n cDe > 0. Hence, the designer can influence everyone. We examine some specific

architectures for network g, that illustrate crucial points that De must take into account when

determining her optimal strategy.

1. Let g be the empty network. In an SPNE,De has to influence all agents. In that case, Ad

has no incentive to influence anyone because it is a costly act, and given De’s strategy,

he cannot persuade any agent to vote 0.

2. Let g be a star, with ic the center of this star. In equilibrium, De must influence ic,

otherwise all neighbors of ic vote 0 if he is influenced by Ad. Since α = 1, when De

influences ic, she ensures that every agent in N \ {ic} votes 1. Moreover, in an SPNE,

De must influence at least as many neighbors of ic as Ad to obtain Θ̄ic ≥ 1/2. If this

is not the case, ic votes 0. Thus, De influences
⌈
n−1
2

⌉
of the neighbors of ic and Ad
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does not influence any agent. Note that if kAd = 2, then De influences only 2 peripheral

agents in addition to the central agent.

3. Let g be the complete network. Then, De has to influence half of the population plus

one agent. First, consider agent i 6∈ IDe. Since g is complete, i has n − 1 neighbors.

In equilibrium, De must obtain Θ̄i ≥ 1/2. We have Θ̄i = ]IDe
n−1 ≥ 1/2, that is ]IDe ≥⌈

n−1
2

⌉
. Second, consider agent i ∈ IDe. We have Θ̄i = ]IDe−1

n−1 ≥ 1/2, that is ]IDe ≥⌈
n+1
2

⌉
. Consequently, De must influence

⌈
n+1
2

⌉
agents.

From this example, we can make some observations about situations where only the opinions

of neighbors matter.

1. Every agent influenced by De has at least as many neighbors who are also influenced by

De as those who are not.

2. Agents not influenced by De must be linked with agents influenced by De. Obviously,

it is better for De if the former have no connections to each other.

It follows from points 1 and 2 that, in equilibrium, unlessDe influences a minimum number of

agents, it is impossible to achieve a unanimous vote for 1. Similarly, when De has the option

to create the network, some strategies are excluded from being part of the SPNE. In particular,

according to point 2, De has no incentive to connect agents she does not influence. Thus,

the complete network will never arise in an SPNE. Similarly, if the cost of link formation is

significantly lower than the cost of influencing agents, the empty network where all agents are

influenced by De cannot arise in an SPNE. In this case, the latter strategy of De will be more

costly than the strategy where De builds the complete network and influences a number of

agents that is equal to one plus half of the agents or the maximum number of attacks of Ad.

Finally, in a star (or partial star), if α = 1 and kAd <
⌈
n−1
2

⌉
, De does not influence

⌈
n−1
2

⌉
peripheral agents in addition to the central agent, but kAd peripheral agents.

We now systematically investigate the optimal strategies chosen by De and Ad when De

has the ability to form the network. First, we analyze our benchmark model in which the social

network contains only links formed by De. Second, we introduce the possibility that links

that are not formed by De appear. This scenario is used to check the robustness of the results

derived from our benchmark model.

3.1 De Creates the Social Network

Since we want to find the SPNE, we start with the optimal strategy of Ad. First, since

C(n(n−1)2 , n) < 1, for any strategy adopted by Ad, De has a strategy that allows her to obtain
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a strictly positive payoff, and therefore a strictly negative payoff to Ad since cAd > 0. In

particular, De can play the complete influence-empty network strategy, and Ad cannot avoid

a unanimous vote for 1, since for every agent i influenced by both De and Ad, θi = 1 holds.

Since Ad cannot avoid strictly negative payoffs in equilibrium by influencing even one agent,

Ad must play influence no agents to obtain a zero payoff in equilibrium. The following result

summarizes this observation.

Lemma 1 Suppose the payoff functions of players De and Ad are given by Equations (3) and

(4) respectively. In an SPNE, Ad always chooses to influence no agents, and the strategy of

De is such that for every agent i ∈ N , θF
i = 1.

Let Ξ ⊆ G[N ] × 2N be the set of pairs (g, IDe) for which Ad’s best response is to influence

no agents. With a slight abuse of notation, we refer to as a winning strategy of De as any pair

(g, IDe) such that all agents vote 1 implying that Ad has no incentive to influence any agents.

Moreover, (g, ÎDe) is a minimal winning strategy if it is a winning strategy, and for any winning

strategy (g′, ÎDe), we have ]E(g) ≤ ]E(g′). Finally, an optimal strategy is a winning strategy

minimizing the cost of De, that is a strategy of De that is an SPNE. Formally, (g?, I?De) is an

optimal strategy for De if and only if

(g?, I?De) ∈ arg min{C(]E(g), ]IDe) : (g, IDe) ∈ Ξ}.

In the following, we denote by (g?, I?De) a typical pair in Ξ that minimizes the cost function.

In the next result, we provide a minimizing program whose solution is the optimal strategy

for De. Recall that for any agent influenced by both players, we have θi = 1, and Ad has no

incentive to influence more than kAd agent. From this it calls that the maximum number of

neighbors of i that Ad can influence is kB1(i, g) = min{kAd, ]Ni(g) \ IDe}. Moreover, let

κ = 2α − 1. Thus, κ ∈ (0, 1] since α ∈ (1/2, 1]. Clearly, for every agent i ∈ IDe, we must

have N 1
i (g) ≥

⌈
κN 0

i (g)
⌉

to obtain θF
i = 1, that is the number of neighbors of i in IDe has to

be greater than κ times the number of neighbors of i in N \ IDe.

Proposition 1 Suppose that payoff functions of players De and Ad are given by Equations

(3) and (4) respectively. Then, in an equilibrium, we have ](Ni(g) ∩ IDe) ≤
⌈
n
2

⌉
for every

i ∈ IDe. Moreover, strategy, (g, IDe), is an optimal strategy for De if and only if it is a

solution of the following minimizing program:
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arg min

(g, IDe) ∈ G[N ]× 2N
C(]E(g), ]IDe) (Prg)

s.t.

∀i ∈ IDe, ](Ni(g) ∩ IDe) ≥ κkB1(i, g), (Cons. 1)

∀i ∈ N \ IDe, ∃j ∈ IDe, Ni(g) = {j}. (Cons. 2)

The above proposition allows us to rule out several architectures that cannot belong to the

set of optimal strategies. More precisely, each agent, who is not influenced by De, has to be

connected with exactly one agent thatDe influences (Cons. 2). Similarly, agents influenced by

De have to satisfy a ratio between their neighbors influenced by De and their neighbors who

are not; this ratio is given in (Cons. 1).

For characterizing optimal strategies, we begin by examining the numbers of agents influ-

enced by De, ]IDe, that appear in an optimal strategy. Then, for each possible value of ]IDe,
we provide the minimal number of links required in any optimal strategy. Finally, using these

facts we establish that there exist only three possible optimal candidate strategies.

In the next proposition, we show that the minimal number of agents thatDe has to influence

in an optimal strategy, ]Imin
De , is equal to x̄ = x̄(κ, n) with

x̄ = arg min
x∈J1,nK

{
x

⌊
x− 1

κ

⌋
≥ n− x

}
. (5)

Note that in Inequality (5) the left-hand side is the maximum number of agents in N \ IDe
whose final opinion is modified by that of the agents in IDe without them being able to modify

the final opinion of the agents in IDe. The right-hand side of Inequality (5) is the total number

of agents that are not influenced by De. In Lemma 4 (see Appendix A.2), we establish that

either x̄ = d
√
κn e or x̄ = d

√
κn e+ 1. Moreover, when α = 1, i.e., κ = 1, we have x̄ =

√
n.

Proposition 2 In any optimal strategy, the minimal number of agents De must influence is:

]Imin
De = min{x̄, dκkAde+ 1}.

We now provide an intuition for this result. There are two possible necessary conditions for

obtaining a winning strategy (and therefore an optimal strategy for De).

1. Suppose that the maximum number of agents that Ad can influence, kAd, is low com-

pared to the number of neighbors of agent i ∈ IDe. Then, De must ensure that the
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number of agent i’s neighbors in IDe is at least equal to the maximum number of attacks

of Ad (weighted by κ). Furthermore, a strategy such as the influence-partial-star strat-

egy, where only one agent (influenced by De) is connected to agents not influenced by

De, reaches the value dκkAde+ 1.

2. Suppose that the maximum number of agents that Ad can influence, kAd, is large com-

pared to the number of neighbors of each agent in IDe. Each agent influenced by De

must have a number of neighbors who belong to IDe (weighted by κ) that is at least

equal to the number of his neighbors who are not in IDe. Moreover, due to (Cons. 2),

agents in IDe have n − ]IDe links with agents that are not influenced by De. Since an

agent i ∈ IDe has at most ]IDe − 1 neighbors in IDe, the minimal number of agents

influenced by De that leads to an optimal strategy is given by Inequality (5).

We now present the minimal winning strategies, i.e., the minimal number of links that De has

to form in a winning strategy given the number of agents she influences, IDe.

Proposition 3 For ]IDe ≥ ]Imin
De , any minimal winning strategy has at least Lmin(]IDe) links

with

Lmin(]IDe) = min

(⌈
κ(n− ]IDe)

2

⌉
, dκkAde

)
+ n− ]IDe. (6)

The minimal number of links that De has to form, given IDe, takes into account two types of

links. Thus, the first term in (6) represents the links between agents influenced by De, while

the second term in (6) represents the links between agents influenced by De and those that are

not. More precisely, there are two cases.

1. Suppose that kAd is large compared to the number of neighbors of agents in IDe. Then,

the sum of degrees in the sub-network g[IDe], i.e., the number of links between agents

in IDe has to be equal to n − ]IDe (weighted by κ), so there are (n − ]IDe)/2 links

(weighted by κ) between agents in IDe. Moreover, there are n − ]IDe links between

agents in IDe and agents in N \ IDe by (Cons. 2) given in Proposition 1.

2. Suppose that kAd is low compared to the number of neighbors of i ∈ IDe. Then, i ∈ IDe
has to form links with at least kAd (weighted by κ) agents in IDe. Again by (Cons. 2)

we know that there are n− ]IDe links between agents in IDe and agents in N \ IDe.

We now provide an example which establishes that there are situations where it is not possible

to reach the bound Lmin(]IDe).

Example 3 Let N = J1, 27K, kAd = 27, and κ = 3/7. By Proposition 2, we have ]Imin
De =⌈√

3/7× 27
⌉

= 4. Similarly, by Proposition 3, Lmin(]Imin
De ) = 23 + d3/14× 23e = 28.
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Obviously, by (Cons. 2), 23 links are required between agents in Imin
De and agents inN \Imin

De .

Suppose now that there are only 5 links between agents in Imin
De . Then, two agents in Imin

De have

formed links with 3 agents in Imin
De , and two agents in Imin

De have formed links with 2 agents in

Imin
De . The former may form links with at most 14 agents in N \ Imin

De and the latter may form

links with at most 2×b2× 7/3c = 8 agents inN \Imin
De . Consequently, one agent inN \Imin

De

does not satisfy (Cons. 2), and Lmin(]Imin
De ) is not a sufficient number of links for obtaining a

winning strategy.

From Propositions 2 and 3, we establish the main result of this section.10

Theorem 1 For any given parameters n, α and kAd, one of the following strategies is optimal:

1. the complete influence-empty network strategy, or

2. a (p, IDe) influence-partial-star strategy, with ]IDe ≥ ]Imin
De and p ≥ dκkAde, or

3. a (κ, IDe) influence-minimal-quasi-core periphery network strategy, with ]IDe ≥ ]Imin
De .

To simplify the presentation of the intuition behind this result, we assume that α = 1, and

De’s cost function is linear. It is clear that the complete-influence-empty network strategy is

an optimal strategy when the relative cost cL/cDe is very high. When cL/cDe is not too high,

there are two possibilities.

1. Suppose kAd is low andDe has an incentive to form links. Then,De forms a star network

where the central agent is linked to all other agents and influences kAd peripheral agents,

i.e., ]IDe = kAd + 1. Here, De benefits from not having to influence more agents than

kAd, i.e., the maximum number of agents that Ad can influence. For example, when

kAd = 1, it is sufficient for De to influence only the center of the star and one peripheral

agent to achieve a unanimous vote for 1.11

2. Suppose kAd = n, i.e., kAd is large, and De has an incentive to form links. Then, De

builds a minimal quasi-core-periphery network and influences the d
√
ne agents in the

core. Agents in IDe are connected to each other to minimize the number of links formed

by De.
10In the working paper, we provide an example showing that each type of strategy presented in the theorem is

optimal. We also present the exact optimal strategies for De when the cost function is linear.
11Similarly, when kAd = 2, (2, J1, 5K)-partial-star g1 drawn in Figure 2 (a), where IDe = J1, 5K, guarantees De a

unanimous vote for 1.
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3.2 Adding Random Links

In this section we want to explore the possibility thatDe does not fully control the network for-

mation. In fact, in any social situation, agents may have a chance to meet each other and form

a connection even if the designer has not established a connection between them. Therefore,

we assume that unlinked agents have a non-negative probability of forming links ω ∈ [0, 1],

altering the neighborhood created by De for each agent. Probability ω is i.i.d., i.e., the random

meetings between agents leading to links are independent events. Moreover, ω is common

knowledge, in particular, it is known by De. Finally, we assume that the cost function of De is

linear and kAd = n. In this section, we consider the following timing of the game:

Stage 1. De chooses her strategy (g, IDe), knowing that any link not formed by her in g

occurs with probability ω;

Stage 2. Nature randomly forms a link between every pair of agents (i, j) who are not linked

in g with probability ω;

Stage 3. Ad observes the agents influenced by De, the network she has formed, as well as the

random links added by Nature before choosing his strategy.

The timing of the game and kAd = n together ensure thatDe does not obtain a strictly positive

payoff when the network (and the set of influenced agents) obtained after Nature’s move is no

longer a winning strategy.

First, for computing the expected payoffs of De and Ad, we need to define a realization gω

of g, where network g is a subnetwork of gω. Let λ(gω | g, ω) be the probability that gω is

realized given probability ω and that De has built network g. We have:

λ(gω | g, ω) =
∏

ij∈E(gω)\E(g)

ω
∏

i′j′ 6∈E(gω)

(1− ω)

= ω]E(gω)\E(g)(1− ω)
n(n−1)

2
−]E(gω).

(7)

A winning realization is a pair (gω, IDe) where Ad has no strategy that allows him to ensure

that at least one agent in the realized network gω will vote 0 when De has influenced agents

in IDe. Let R(g, IDe) be the set of realizations associated with g.12 Let WR(g; IDe) ⊆
R(g, IDe) be the set of winning realizations of g given IDe. Assuming that the cost function

12(gω, IDe) can be seen as a winning strategy in the benchmark model where De forms network gω and influence

agents in IDe.
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of De is linear, her expected payoff is given by:

Eu(θF[s, σ]) =
∑

gω∈WR(g,IDe)

λ(gω | g, ω)− cDe]IDe − cL]E(g). (8)

Similarly, the expected payoff of Ad is:

EU(θF[s, σ]) = 1−
∑

gω∈WR(g,IDe)

λ(gω | g, ω)− ]IAdcAd. (9)

At first glance it might seem that De will view the possibility of the occurrence of such

unwanted links always being harmful. Indeed, when the number of agentsDe has influenced is

lower than the number of agents she does not influence, the probability that “bad” links (which

involve agents non influenced by De) is higher than the probability that “good” links (which

involve only agents influenced by De) occur. However, the possibility that unwanted links can

occur is not always harmful for De. For instance, suppose that α = 1 and for ω = 0, the

optimal strategy of De is the complete influence-empty network strategy. However, if ω
n(n−1)

2

is sufficiently close to 1, then De has an incentive to influence only bn/2c + 1 agents instead

of influencing all the agents to obtain that a unanimous vote of 1. In this case, the probability

that the complete network occurs is sufficiently high and De obtains a higher payoff with this

strategy than with the complete influence-empty network strategy. We now provide a lower

bound for ω such that the strategies that are candidates for being optimal are the same as those

given in Theorem 1. This statement highlights the continuity in the results obtained in our

benchmark model when ω is sufficiently small.

Proposition 4 Suppose that ω ≤ cL
4n . Then, the candidate strategies for being optimal are the

same as those given in Theorem 1.

Moreover, it is worth noting that in Proposition 4, ω depends on n. Let us illustrate this

point when α = 1. Consider, for example, a (1, IDe)-influence-MQC strategy where ]IDe =

d
√
n e. When this strategy is played by De, and a link occurs, the probability that this link is

formed between any agent i ∈ N and an agent j ∈ N \IDe is at least 1− (d
√
n e
2 )

(n2)
≥ 1−

√
n+1
n .

Notice that limn→+∞ 1−
√
n+1
n = 1. In other words, when the number of agents is very large

and a link occurs, the probability that it involves an agent inN \IDe becomes very large when

De uses a (1, IDe)-influence-MQC strategy with ]IDe = d
√
n e. Obviously, this type of link

makes such a strategy inefficient.

We now illustrate the probabilistic case in a specific situation where α = 1, N = J1, 4K,

thus ]Imin
De = 2. Clearly, ]IDe ∈ J2, 4K and De always obtains 1 − 4cDe when she influences

4 agents. Note that De does not form any links between agents who are not influenced by her.
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Figure 3: Networks for the Probabilistic Model when N = J1, 4K

Let us explore in turn the cases where ]IDe = 2 and ]IDe = 3 and provide the probability of

achieving a network that is resistant to Ad attacks.

1. ]IDe = 2, say IDe = {1, 2}. Note that there are only two networks where all agents

vote 1 – up to a relabeling of agents: g0 and g7 in Figure 3. When De forms no links,

then the probability that g0 or g7 occur is 2ω3(1−ω)2. WhenDe forms one link, she has

two possibilities: either she forms a link between two agents in IDe, or she forms a link

between an agent in IDe and an agent in N \ IDe. The former leads to a probability of

obtaining g0 or g7 equal to 2ω2(1−ω)2, and the latter leads to a probability of obtaining

g0 or g7 equal to ω2(1 − ω)2. Consequently, De always has an incentive to form a link

between two agents she influences. When De forms two links, she has two possibilities:

either she forms a link between two agents in IDe and one link between an agent in

IDe and an agent in N \ IDe, or both links are between an agent in IDe and an agent in

N\IDe. In both cases the probability of obtaining g0 or g7 is equal to ω(1−ω)2. Further,

when De forms three links, the probability that g0 or g7 occurs is (1 − ω)2. When De

forms g7, network g0 cannot occur and the probability that the realized network is g7

is (1 − ω)2. Thus, De faces the same probability of success forming g0 as forming g7,

while g0 allows her to save a costly connection. Moreover, if De forms more than 4

links, then she cannot obtain a winning realization given ]IDe = 2. Consequently, it is

suboptimal for De to form more than 3 links.

2. ]IDe = 3, say IDe = {1, 2, 3}. We draw in Figure 3 the different networks where

all agents vote 1 when IDe = {1, 2, 3} up to a relabeling of agents. By using similar

arguments as in the previous point and the list of networks g1 to g10 we obtain the

following results.13 When De forms no links the probability that all agents vote 1 is

13Here we indicate the probability associated with the strategy of De that maximizes the probability of getting all
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ω6 + 6ω2(1− ω)2 + 6ω4(1− ω). When De forms 1 link the probability that all agents

vote 1 is ω + ω(1− ω). When De forms 2 links the probability that all agents vote 1 is:

max{1 − ω(1 − ω)2, 1 − (1 − ω)3}. When De forms 3 links, she can ensure to obtain

that all agents vote 1 with network g2. It is also possible when she forms 4, 5 or 6 links.

Let us now provide the optimal strategies of De for some specific sets of parameters.

More precisely, we assume that N = J1, 4K. We define the following strategies for De: S1 :

IDe = {1, 2}, E(g) = {12, 13, 24}, S2 : IDe = {1, 2, 3}, E(g) = {12, 13, 34}, and S3 :

IDe = {1, 2, 3}, E(g) = {12, 13}, S4 : IDe = {1, 2, 3}, E(g) = ∅, and S5 : IDe =

{1, 2, 3, 4}, E(g) = ∅. In the following table, we provide an optimal strategy for De up to a

relabeling of agents for several value of ω and cL given that cDe = 0.07.

ω

cL 1/1000 1/100 11/100

1/1000 S1 S1 S5

87/100 S2 S3 S4

99/100 S4 S4 S4

Let us provide some observations through these examples.

1. When the probability of unwanted links is very low, the optimal strategy is the same as

in the benchmark model, and depends on the relative cost of cL and cDe (see Proposition

4).

2. When the probability of unwanted links is very high, then the optimal strategy is to play

S4: De forms no links, and influences a number of agents that allow her to obtain that

each agent votes 1 in the complete network. In this case, De will incur lower costs than

in the benchmark model if cDe is sufficiently low relative to cL.

3. When the probability of unwanted links is moderate, some intermediate strategies, where

De influences a number of agents in JImin
De + 1, n− 1K become optimal. In particular, in

S3, De influences 3 agents, 3 > ]Imin
De . Moreover, the number of links and the number

of agents De influences depend on the relative cost of cL and cDe.

4 Extensions

In this section, we systematically address and relax, one by one, the three key assumptions

made in the benchmark model. First, we assume that agents do not have to vote following their

agents to vote 1.
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initial interactions, but rather after a finite number of interaction periods. Second, we relax the

unanimity assumption by allowing De to win if a majority of the agents vote for 1. Third, we

assume that an agent, influenced by both De and Ad, follows the opinion of Ad, i.e., De is no

longer a better influencer than Ad.

4.1 Reach Unanimity in Several Periods

Our benchmark model raises a natural question: What is De’s optimal strategy if the final

vote of the agents does not have to take place immediately after their first interaction, but after

several interactions? Specifically, De must obtain a unanimous vote at a specific time period

T . Thus, we assume a process with T + 1 periods, where the opinion of agent i at period

t ∈ J0, T K is denoted by θti , with θ0i = θ and θTi = θF
i . At each period t ∈ J0, T K, the agents

vote or choose an action, but only the vote cast at period T determines the payoffs of De and

Ad.14 Votes in periods before T are non-binding, while votes at T are binding. Each agent

observes the votes or actions made by her neighbors at time t − 1 and adjusts her opinion

at time t in response to these observations. To simplify the presentation, in this section, we

restrict our attention to α = 1 and kAd = n. In line with our benchmark model, we have for

t ∈ J0, T K,

vti = vti(θ
t
i) =


1 if θti ≥ 1/2,

0 if θti < 1/2,

∅ if θti = ∅,
(10)

and v0i = θ0i = θi. In contrast to our benchmark model, we allow for a non-binding vote of

agents after the initial stage of opinion formation.

Let us denote the vector that summarizes the non-binding vote of agents at period t ∈
J0, T − 1K by vt = (vt1, . . . , v

t
n), and the vector of binding votes is denoted by v = vT =

(vT1 , . . . , v
T
n ). Moreover, let Vki (g; t) = {j ∈ Ni(g) : vtj = k} be the set of neighbors of agent

i who vote k ∈ {0, 1, ∅} at period t. Recalling that α = 1, we have for t ∈ J0, T K,

14During the first T − 1 periods, the agents’ vote do not affect the players’ payoffs. This type of informative vote

without consequences, called a straw poll, occurs in certain decision-making processes, like an initial round of voting

to seek opinions, followed by more discussions before a final vote is cast. For instance, such a process is often followed

in universities while making tenure decisions.
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Figure 4: i1-triangle-networks and Strategy

θt+1
i =


1

]V0i (g; t) + ]V1i (g; t)

∑
j∈V0

i (g;t)∪V1
i (g;t)

vtj if V0i (g; t) ∪ V1i (g; t) 6= ∅,

θti otherwise.

(11)

Finally, we preserve the payoff function given in Equations (3) and (4). We now present a

specific network architecture, up to a relabeling of agents, that allows us to define a useful

strategy for the rest of this section. Recall that Pi1,im = i1 i2, i2 i3, im−1 im is a path between

agents i1 and im.

Definition 3 Let γ = 3 + dn−42 e. A i1-triangle-network g

(O1) contains the subnetworks g({i4, . . . , iγ}) = Pi4,iγ , and g({iγ+1, . . . , in}) = Piγ+1,in .

Also, g({i1, i2, i3}) which is a triangle, i.e., a cycle that contains links i1 i2, i1 i3, and

i2 i3;

(O2) in addition network g contains links i1 iγ and i1 iγ+1.

By construction, d (i1, i`; g) ≤ dn−32 e for all ` ∈ J4, nK. We illustrate these types of networks

through the i1-triangle-network g drawn in Figure 4 (a). We have N = Ji1, i9K, hence γ = 3 +

d9−42 e = 6. Subnetwork g({i4, i5, i6}) = Pi4,i6 is colored gray, subnetwork g({i7, i8, i9}) =

Pi7,i9 is colored black, and g({i1, i2, i3}) colored white is a cycle. Links i1 i6 and i1 i7 are

colored green.

The strategy whereDe influences a unique agent, i1, is called an influence-i1-triangle strategy.

Figure 4 (b) presents network g in which De influences agent i1.
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Proposition 5 Suppose that at period t agents vote according to Equation (10) and form their

beliefs according to Equation (11).

1. De must influence at least one agent to ensure that all agents choose 1 in a finite number

of periods.

2. Suppose that De influences only one agent.

(a) Any network g designed by De that leads to N (1,v) = N in a finite number of

periods must be connected and contains at least n links.

(b) Moreover, there exists a network g, with ]E(g) = n, that leads to N (1,v) = N in

a finite number of periods.

By inspecting the proof of this proposition, an influence-i1-triangle strategy leads all agents

to vote 1 in 2+(maxi`∈N d(i1, i`; g)) periods. We illustrate this convergence process of voting

in the next example.

Figure 5: Vote Process with an Influence-i1-triangle Strategy

Example 4 Let N = J1, 9K, α = 1, and kAd = n. Suppose that De uses an influence-i1-

triangle strategy and Ad influences all agents. We represent the situation at t = 0 in Figure 5

where black colored agents have their initial opinion equal to 0, while the white colored agent

has his initial opinion equal to 1. Figure 5 illustrates the evolution of the change in agents’

opinions over time for t = 0, . . . , 5, and shows the various stages until a unanimous vote for 1

is obtained. For example, players i2, i3, i6, and i7 have two neighbors, including i1. Since i1
votes 1 at t = 0, each of them has an opinion equal to 1 at t = 1. The process continues until

period 5 using the same logic – note that maxi`∈N d(i1, i`; g) = 3. Thus, in equilibrium, Ad
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has no incentive to influence agents since it is costly and does not prevent agents from voting

unanimously for 1. Clearly, it is possible to increase the speed of convergence of the process

by increasing the number of agents influenced by De or the number of links she forms. Thus,

if De adds a link between i4 and i9, the process converges to a unanimous vote for 1 at t = 4.

Similarly, if De influences agents i6 and i7, then the process converges to a unanimous vote

for 1 at t = 2.

Next, we show that De only needs to influence two agents when she builds a connected

acyclic network to obtain that all agents vote 1 in a finite number of periods.

Example 5 Let N = J1, 10K, α = 1, and kAd = n. Suppose that De builds a network which

contains a path and influences agents 1 and 2 as represented in Figure 6 at t = 0. Colored

black agents have their initial opinion equal to 0, while colored white agents have their initial

opinion equal to 1. Figure 6 illustrates the evolution of the change in agents’ opinions over

time for t = 0, . . . , 4 until a unanimous vote in favor of 1 is obtained. Clearly, when De uses

this strategy, the unanimity of the agents to vote 1 is achieved in
⌈
n−2
2

⌉
= 5 periods.

Figure 6: Vote Process When Two Agents Are Influenced by De

In summary, if we allow the agents to interact several times instead of just once before they

vote, De can acquire the unanimous vote she needs to win using fewer resources. The network

of agents acts as a powerful secondary influencer, saving the designer resources. Thus, repeated

interaction between agents favors De.
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4.2 Influencing Only the Majority

In this section, we consider a situation where De obtains a strictly positive payoff if and only

if at least half of the population, i.e., dn/2e agents, votes 1.15 We restrict our attention to the

case where the cost function of De is linear. The majority rule is incorporated into the model

by modifying De’s payoff function as follows

uMaj(v[s, σ]) =

{
1− cL ]E(g)− cDe ]IDe if ]N (1,v) ≥ dn2 e,
−cL ]E(g)− cDe ]IDe otherwise.

(12)

The payoff function of Ad is modified similarly:

UMaj(v[s, σ]) =

{
1− cAd ]IAd if ]N (1,v) < dn2 e,
−cAd ]IAd otherwise.

(13)

Following the arguments given in Lemma 1, in the SPNE Ad does not influence any agent.

Let us begin by providing some properties of the winning strategies of De based on the size of

IDe.

1. If IDe = ∅, then there exists no winning strategy for De.

2. If IDe = {ic}, then consider a partial-star where ic is the central agent with dn/2e
peripheral agents. Let all other agents be isolated. This constitutes a winning strategy

(regardless of the value of α).

3. If ]IDe ∈ J2, dn/2e − 1K, then consider a partial-star where ic is the central agent with

dn/2e−]IDe+1 peripheral agents. Let all other agents be isolated. De influences ]IDe−
1 isolated agents and the central agent. This constitutes a winning strategy (regardless of

the value of α).

4. If ]IDe ≥ dn/2e, then the empty network is a winning strategy.

In contrast to the benchmark model, there is always a winning strategy where De builds a

partial-star which is less costly than any winning strategy where De builds a minimal-quasi-

core periphery network. Indeed, in the majority case, the center of the partial-star, ic, does not

need to vote 1. Thus, property (Q1) is no longer required. Consequently, De can influence ic
and connect him to any number of agents she does not influence to get a majority of votes –

De can also influence some isolated agents in the partial-star. Moreover, for a given IDe, the

number of links De formed in a winning strategy where she builds a partial-star strategy is at

most equal to the number of linksDe formed in a winning strategy where she builds a minimal

15Typically majority would require strictly greater than half, ]N (1,v) ≥ dn/2e + 1. But, the results presented in

this section would be qualitatively the same for this case as well.
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quasi-core. In particular, there is no link between the agents in IDe in a winning strategy

based on a partial-star, while De forms at least one such link in a winning strategy based on

a minimal-quasi-core network. It follows that there are two possible strategies for De: either

build the empty network and influence dn/2e agents, or build the cheapest partial-star network

that allows her to get dn/2e agents who vote 1. Since De chooses the less costly strategy, her

least cost strategy incorporating these two possibilities is given by

min

{
dn/2ecDe, min

x∈J1,dn/2e−1K
(xcDe + (dn/2e − x+ 1)cL)

}
.

The above arguments are summarized in the following proposition given without proof. In

fact, it is sufficient to observe that De has no incentive to influence more than one agent when

she forms links, due to the linearity of the costs.

Proposition 6 Suppose the payoff functions of playersDe andAd are given by Equations (12)

and (13) respectively. An optimal strategy is independent of the value of α and of cAd. Further,

1. if cL
cDe

>
(

1− 1
dn/2e

)
, then in her optimal strategy De forms no links and influences

exactly dn/2e agents;

2. if cL
cDe

<
(

1− 1
dn/2e

)
, then in her optimal strategy De forms dn/2e links and influences

exactly 1 agent. The resulting network is a partial-star; and

3. if cL
cDe

=
(

1− 1
dn/2e

)
, then the two strategies listed above are equilibria.

The strategy where De builds the partial-star where it influences the center implies that

peripheral agents have only one neighbor with 1 as initial opinion. Therefore, in contrast to the

benchmark model, De shapes the network according to her costs cL and cDe, without taking

into account the costs for influencing agents incurred by Ad, or the value α.

4.3 Adversary is a Better Influencer than Designer

In this section, we assume that when both players De and Ad exert influence on agent i, the

adversary is the one with the better influencing technology, i.e., θi = 0. In order to simplify

the presentation, we assume that n is even.16 Formally, the initial opinion of each agent i is

now given by

θi =


1 if i ∈ IDe \ IAd
0 if i ∈ IAd
∅ if i /∈ IDe ∪ IAd

16The results obtained when n is odd are qualitatively the same, except that there exist conditions where as part of

her optimal strategies player De chooses ]IDe = n− 1.
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To present the results, additional definitions of networks and strategies are required. A k-

regular network g is a network where every i ∈ N has exactly k links. We illustrate a 4-regular

network in Figure 7 (a).

Figure 7: Specific Strategies of De

Definition 4 In a (a, b,Y)-groups-regular network, N is partitioned into two subsets: Y and

N \ Y . Moreover, when a× ]Y is even, we have

(R1) For every i ∈ Y ,
∑
j∈Y
Ai,j(g) = a,

(R2) For every i ∈ N \ Y ,
∑
j∈Y
Ai,j(g) = b, and

∑
j 6∈Y Ai,j(g) = 0.

When a × ]Y is odd, conditions provided in (R1) and (R2) hold except that there is a unique

agent i ∈ Y for whom we have
∑

j∈Y Ai,j(g) = a+ 1.

Let g be a network that satisfies (R1) and (R2) where a × ]Y is even. (R1) implies that g[Y]

is an a-regular network, and (R2) implies that every agent in N \ Y has formed b links with

agents in Y and no links with other agents inN \Y . In Figure 7 (b) we illustrate a (2, 3, J3, 7K)-

group-regular network where every agent in Y = J3, 7K is colored white. Clearly, each agent

in Y , is linked to two other agents in Y . Moreover, each agent in N \ Y , colored black, has

three links all with agents in Y . In Figure 7 (c), we present the same type of strategy when

a× ]Y is odd, where player 7 ∈ Y has 4 links with other members of Y .

In this section we focus on two specific strategies for De. First, in an a-regular network

strategy, De builds an a-regular networks and influences all agents. Second, in a (a, b,Y)-

groups-regular network strategy, De builds a (a, b,Y)-groups-regular network and influences

all agents in Y .
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Since Ad is now a better influencer than De, he chooses a (minimal) number of agents

to influence so that for one agent, say i, vi(θF
i ) = 0. When kAd is sufficiently high, there

is no strategy in which De can get all the agents to vote 1. This is the case, for example,

when kAd = n. We begin our analysis by examining the conditions concerning the minimum

number of agents De must influence to achieve a unanimous vote for 1, relative to the number

of agents Ad has an incentive to influence. Let η =
⌈
α(kAd−1)
α− 1

2

⌉
.

Proposition 7 Suppose that payoff functions of players De and Ad are respectively given by

Equations (3) and (4) and n is even.

1. Suppose that (1 − α)kAd < 1/2. If n ≥ d2αkAde + 1, then ]Imin
De = d2αkAde + 1.

Otherwise, there is no winning strategy for De.

2. Suppose that (1 − α)kAd > 1/2. If n ≥ η, then ]Imin
De = η + 1. Otherwise, there is no

winning strategy for De.

3. When (1− α)kAd = 1/2, then the previous two results hold.

We now provide an intuition for this result. First, recall that Ad wants to obtain vi(θF
i ) = 0

for either i ∈ IDe, or for i ∈ N \ IDe. Second, Ad has two possible strategies: either he

influences both agent i and some of his neighbors, or he only influences some neighbors of

i. The threshold given in Proposition 7 follows from straightforward computations given the

previous strategies that Ad can use.

In the proposition below, we provide the candidate strategies for being optimal. Some

additional properties of C(]E(g), ]IDe) are needed to characterize optimal strategies. Obvi-

ously, we restrict our attention to cases where De has an incentive to influence some agents

(and possibly form links). Clearly, the complete influence-empty network strategy cannot be

optimal for De, since Ad can always influence one agent, say i, and obtain vi(θF
i ) = 1.

Proposition 8 Suppose that the cost function is convex in each of its two arguments, and n is

even.

1. Suppose that 1
2 < (1 − α)kAd < α. If De has a winning strategy, then the strate-

gies’ candidate for being optimal are: (η, 2kAd, IDe)-groups-regular network strategies

where ]IDe ∈ J]Imin
De , n− 1K, or η-regular network strategies.

2. Suppose that (1 − α)kAd <
1
2 . If De has a winning strategy, then the strategies’ can-

didate for being optimal are: (d2αkAde, 2kAd, IDe)-groups-regular network strategies

where ]IDe ∈ J]Imin
De , n− 1K, or d2αkAde-regular network strategies.
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3. Suppose that (1 − α)kAd > α. If De has a winning strategy, then the only optimal

candidate strategies are:
(
η, η, Imin

De

)
-groups-regular network strategies.

Moreover, when (1 − α)kAd = 1
2 , points 1. and 2. hold, and when (1 − α)kAd = α points 2.

and 3. hold.

In the above proposition, it is interesting to note that there are different group regular network

strategies that are candidates to be optimal forDe in the first two points, depending on the value

of ]IDe. The number of agents influenced by De differs in these different strategies. These

possibilities arise from the fact that, in these strategies, the number of neighbors of i ∈ IDe
De must influence to get vi(θF

i ) = 1 is less than the number of neighbors of j ∈ N \ IDe
De must influence to get vj(θF

j ) = 1. Consequently, the fewer agents De influences, the more

links she has to create. Each of these additional links involves an agent in IDe and an agent in

N \ IDe, and allows De to prevent agents in N \ IDe from voting for 1.

5 Concluding Remarks

In this paper, we examine a situation in which a player can both establish the pattern of interac-

tions between agents and influence them. We study how this player should act when faced with

an opponent who intends to counter influence the agents. This type of situation occurs in many

social situations where a player, the designer, has the ability to create links between agents

by forming committees, working groups, and so on. More specifically, we have assumed that

the two players interact in a “zero-sum” type game where the designer wins if and only if she

obtains the vote of all the agents. We have provided the optimal strategies for the designer

to obtain a unanimous vote for 1, given that creating links and influencing agents are costly

activities. These optimal strategies depend on these costs. We then explore the possibility that

unplanned links may occur with some probability, and provide a condition that allows us to

preserve the results obtained in the benchmark model.

In the extension section of the paper, we relax the main assumptions. First, we assume

that agents interact multiple times before voting. We show that the designer’s optimal strategy

is less costly in this case since the designer can use the network to persuade everyone due to

the repeated interactions. In addition, the architectures of the networks she builds are very

different from that of the benchmark model. In particular, these networks allow the designer

to achieve unanimity among agents by influencing only a single agent. Note that the process

of achieving unanimity can often be lengthy. Second, we assume that the designer only needs

the consent of a majority of agents to win the zero-sum game, rather than unanimity as in
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our benchmark model. Not surprisingly, we find that the designer’s optimal strategy requires

fewer resources. We also find that the designer’s optimal strategy does not depend on the cost

of influencing the adversary’s agents in this context. Furthermore, the designer builds networks

that are qualitatively close to the benchmark model. Finally, we explore a situation where the

adversary is a better influencer than the designer. We establish that the designer can only win

the zero-sum game if she can overcome the number of attacks of her opponent by forming links

and influencing agents. Moreover, the designer’s optimal strategies are very different from

those in the benchmark model. In particular, there are situations where the designer needs to

influence all agents and form links between them in order to avoid the diffusion of opinion in

favor of the adversary. The extension section shows that the results are significantly affected by

which the player is the most effective influencer, i.e., who has the best influencing technology.

This finding has important implications for public policy. Thus, in the context of Example 1,

if the police (the adversary) have a greater ability to influence and threaten a sufficient number

of the criminal organization’s members, then the criminal organization’s ability to control the

pattern of interactions of its members may not be sufficient to secure their consent/loyalty. In

other words, the fact that the designer is not the best influencer is not always compensated for

by his ability to shape the network, which may require specific public policies.

References

[1] D. ACEMOGLU, A. MALEKIAN, AND A. OZDAGLAR, Network security and contagion,

Journal of Economic Theory, 166 (2016), pp. 536–585.

[2] D. ACEMOGLU, A. OZDAGLAR, AND J. SIDERIUS, A model of online misinformation,

The Review of Economic Studies, accepted, (2023).

[3] J. H. ALDRICH, Why parties?, American Politics & Political Economy S., University of

Chicago Press, Chicago, IL, Jan. 1996.

[4] M. BACCARA AND H. BAR-ISAAC, How to Organize Crime, The Review of Economic

Studies, 75 (2008), pp. 1039–1067.

[5] M. BARBER AND N. MCCARTY, Causes and consequences of polarization, in Political

Negotiation: A Handbook, Mansbridge, Jane, and Cathie Jo Martin, editors. Brookings

Institution Press, 2016, pp. 37–90.

[6] M. BATTAGLINI, V. L. SCIABOLAZZA, AND E. PATACCHINI, Abstentions and social

networks in congress, The Journal of Politics, 85 (2023), pp. 581–592.

32



[7] F. BLOCH, G. DEMANGE, AND R. KRANTON, Rumors and social networks, Interna-

tional Economic Review, 59 (2018), pp. 421 – 448.

[8] C. BRAVARD, L. CHAROIN, AND C. TOUATI, Optimal design and defense of networks

under link attacks, Journal of Mathematical Economics, 68 (2016), pp. 62–79.

[9] C. BRAVARD, J. DURIEU, S. SARANGI, AND S. SÉMIRAT, False information from near
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Appendix A. Model Analysis

A.1. Existence of (q,Y)-MQC Network

To show the existence of a (q,Y)-MQC network for every q ≤ 1, it is sufficient to establish

that the set of (q,Y)-quasi-core-periphery networks is non-empty. Indeed, since this set is

finite, it admits at least one minimal element with regard to the number of links. Since q ≤ 1, a

(1,Y)-MQC is a (q,Y)-quasi-core-periphery network. The existence of (1,Y)-MQC implies

that the set of (q,Y)-MQC networks is non-empty.

Let us construct a process that leads to a (1,Y)-MQC network g. We build network g as

follows:

1. Start with the empty network.

2. While ]E(g[Y]) = 1
2

∑
i,j∈Y Ai,j(g) is such that ]E(g[Y]) <

⌈
n−]Y

2

⌉
, take two un-

linked agents i, j ∈ Y such that ]Ni(g), ]Nj(g) ∈ min`∈Y{]N`(g)}, do i j ∈ E(g).

When ]E(g[Y]) =
⌈
n−]Y

2

⌉
go to 3.

3. While there exists j ∈ N \ Y , with Nj(g) = ∅, take i ∈ Y with
∑

`∈Y Ai,`(g) ≥∑
`∈N\Y Ai,`(g) + 1, do i j ∈ E(g). Stop.

A.2. Optimal Strategy of De

In order to present the proof of Proposition 1, we introduce two lemmas.

Lemma 2 Suppose that payoff functions of players De and Ad are respectively given by

Equations (3) and (4). Let (g, IDe) be a winning strategy. For every i ∈ IDe, we have

](Ni(g) ∩ IDe) ≥ κkB1, with kB1 = kB1(i, g).

Proof The condition is obvious for isolated agents in IDe. Consider a non-isolated agent

i ∈ IDe. A winning strategy requires that θF
i = 1. By Equation (2), this is true when 1/2 ≤

(1 − α) + αΘ̄i = 1 − α + α ](Ni(g)∩IDe)
](Ni(g)∩IDe)+kB1

for every i ∈ N . Hence,
(
α− 1

2

)
kB1 ≤

1
2](Ni(g) ∩ IDe) which leads to the conclusion.

�

Lemma 3 Suppose that payoff functions of playersDe andAd are respectively given by Equa-

tions (3) and (4). Let (g, IDe) belong to a minimal winning strategy. If i ∈ N \ IDe, then

Ni(g) = {j}, with j ∈ IDe.
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Proof Suppose that (g, IDe) is a minimal winning strategy. First, if i ∈ N \ IDe, then i is not

isolated. Otherwise, Ad chooses to influence agent i, and the strategy is not a winning one,

a contradiction. Second, we show that if i, j ∈ N \ IDe, then Ai,j(g) = 1. It is clear that

links between agents i, j ∈ N \ IDe cannot allow De to save links between agents in IDe and

agents in N \ IDe. Consequently, De has no incentive to form links between agents i and j

in N \ IDe. Similarly, if i ∈ N \ IDe has a unique neighbor who is influenced by De, then

θF
i = 1. Again, an additional link between i and another agent in IDe is useless and costly and

thus not formed in a minimal winning strategy. �

Proof of Proposition 1 First, we establish that ](Ni(g) ∩ IDe) ≤
⌈
n
2

⌉
for every i ∈ IDe. To

introduce a contradiction, suppose that there exists i ∈ N such that ](Ni(g)∩IDe) ≥
⌈
n
2

⌉
+1 .

Then, ](Ni(g)∩IDe) ≥
⌈
]Ni(g)

2

⌉
+1 ≥ ]Ni(g)+2

2 . We have 2](Ni(g)∩IDe) ≥ ]Ni(g)+2⇒
](Ni(g) ∩ IDe) ≥ ]Ni(g) − ](Ni(g) ∩ IDe) + 2 ⇒ ]N 1

i (g) ≥ ]N 0
i (g) + 2 ⇒ ]N 1

i (g) ≥⌈
κ]N 0

i (g)
⌉

+ 2. Consequently, if ](Ni(g) ∩ IDe) ≥
⌈
n
2

⌉
+ 1, then it is possible for De to

decrease C(]E(g), ]IDe) by removing a link and obtain a winning network, a contradiction.

Second, we establish that a strategy is optimal if and only if it is a solution of Program (1).

Note that an optimal strategy for De is a minimal winning strategy. We divide the proof into

two parts.

1. We establish that an optimal strategy (g?, I?De) is a solution of the program. We know

that an optimal strategy (g?, I?De) for De has to satisfy the two necessary conditions given in

Lemmas 2 and 3, i.e., (Cons. 1) and (Cons. 2). Moreover, an optimal strategy has to minimize

the cost incurred by De. The result follows.

2. We show that a solution of the program (g?, I?De) is an optimal strategy. Suppose that

the solution of the program is not an optimal strategy for De. Then, there exists a winning

strategy (g, IDe) less costly than (g?, I?De). Such a pair (g, IDe) has to violate one of the two

constraints, a contradiction by Lemmas 2 and 3.

�

We now introduce a lemma needed for the proof of Proposition 2.

Lemma 4 Let

x̄ = arg min
x∈J1,]N K

{
x

⌊
x− 1

κ

⌋
≥ n− x

}
. (14)

Then, x̄ = d
√
κne or x̄ = d

√
κne+ 1.

Proof Consider the real valued function f : x 7→ x
⌊
x−1
κ

⌋
− (n − x). We seek x̄/inN,

the minimal value such that f(x̄) ≥ 0. Let w =
√
κn. Then, w

⌊
w−1
κ

⌋
=
√
κn
⌊√

κn−1
κ

⌋
≤

√
κn
(√

κn
κ − 1

)
= n−

√
κn = n−w and thus f(w) ≤ 0. Let y =

√
κn+1. Then y

⌊
y−1
κ

⌋
=
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(
√
κn+ 1)

⌊√
κn
κ

⌋
> (
√
κn+ 1)

(√
κn
κ − 1

)
= n+

√
κn
κ −

√
κn−1 = n+

√
κn
κ −y > n−y.

Thus, f(y) > 0. Since f is strictly increasing any value x ≥ y satisfies f(x) ≥ 0. Similarly,

any value x < w satisfies f(x) < 0. The conclusion follows from the fact that x̄ is the smallest

integer for which f is non-negative.

�

Proof of Proposition 2 In a winning strategy, and so in an optimal strategy, there is at least one

agent in IDe. By Proposition 1, an optimal strategy satisfies (Cons. 1) and (Cons. 2). Since for

every i ∈ N , kB1(i, g) = min{kAd, ]Ni(g) \ IDe} two cases can occur.

1. Consider an optimal strategy where ](Ni(g) \ N 1
i (g)) ≤ kAd for every i ∈ IDe. Then,

from (Cons. 1), we have ]N 1
i (g) ≥ κ kB1 . Thus, ]IDe − 1 ≥ ]N 1

i (g) ≥ κ ](Ni(g) \
N 1
i (g)). Hence, ]IDe−1κ ≥ ](Ni(g) \N 1

i (g)) and finally
⌊
]IDe−1

κ

⌋
≥ ](Ni(g) \N 1

i (g))

since the right-hand side is an integer. Summing over all agents in IDe, we obtain that

]IDe
⌊
]IDe−1

κ

⌋
≥
∑

i∈IDe ](Ni(g)\N 1
i (g)). Next, from (Cons. 2), we have n− ]IDe =∑

i∈IDe ](Ni(g)\N 1
i (g)) and thus necessarily ]IDe

⌊
]IDe−1

κ

⌋
≥ n−]IDe. By definition

x̄ is the minimum integer that satisfies the above inequality. From Appendix A.1, a

winning strategy with ]IDe = x̄ agents exists: it is a (κ, IDe)-influence-MQC network

strategy.

2. There exists i ∈ IDe such that ](Ni(g)\N 1
i (g)) > kAd. Since ]N 1

i (g) ≥ κkB1 = κkAd,

necessarily ]IDe ≥ κkAd + 1. Consider a partial-star-network with the center being

influenced by De as well as dκkAde peripheral agents. It is a winning strategy satisfying

the minimal number of influenced agents. It is possible to construct it if and only if

n ≥ κdkAde+ 1.

�

Proof of Proposition 3 First, we deal with the number of links between agents in IDe. Two

cases can occur.

1. Consider a minimal winning strategy where ](Ni(g) \ N 1
i (g)) ≤ kAd for every i ∈

IDe. From (Cons. 1), we have ]N 1
i (g) ≥ κkB1 for i ∈ IDe. Thus, ]N 1

i (g) ≥
κ ](Ni(g) \ N 1

i (g)). By summing over all agents in IDe, we have
∑

i∈IDe ]N
1
i (g) ≥

κ
∑

i∈IDe(](Ni(g) \ N 1
i (g)). Note that

∑
i∈IDe ](Ni(g) \ N 1

i (g)) represents the to-

tal number of links joining agents in IDe to agents in N \ IDe. Thus, by (Cons. 2),∑
i∈IDe(](Ni(g) \ N 1

i (g))) = n− ]IDe. Therefore, the number of links in g[IDe] is at

least
⌈
κ(n−]IDe)

2

⌉
.
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2. Consider a minimal winning strategy where there is i ∈ IDe such that ](Ni(g)\N 1
i (g)) >

kAd. By Proposition 1, we have ]N 1
i (g) ≤

⌈
n
2

⌉
. Moreover, since ]N 1

i (g) ≥ κ kB1 =

κ kAd, g[IDe] contains at least dκ kAde links involving agent i.

From (Cons. 2), the number of links joining agents in IDe to agents in N \ IDe is exactly

n− ]IDe in a minimal winning strategy. The result follows. �

Proof of Theorem 1 Recall that an optimal strategy is a winning strategy where De cannot

remove a link without forming additional links given the set of agents she influences. Consider

a winning strategy such that ]IDe = n. Then, the unique winning strategy is the complete

influence-empty network. When ]IDe < n, there are two possibilities:

1. Consider strategies where ](Ni(g) \N 1
i (g)) ≤ kAd for every i ∈ IDe. We establish that

(κ, IDe)-influence-MQC network strategies with ]IDe ≥ ]Imin
De are optimal. First, they

are winning strategies since they satisfy (Cons. 1), (Cons. 2), and Proposition 2. Second,

the number of links in (κ, IDe)-influence-MQC network strategies satisfies the bound

given in the proof of Proposition 3 part 1.

2. Consider strategies where there is i ∈ IDe such that ](Ni(g)\N 1
i (g)) > kAd. We estab-

lish that (p, IDe)-influence-partial-star strategies, with ]IDe ≥ ]Imin
De and p ≥ dκkAde

are optimal. First, they are winning strategies since they satisfy (Cons. 1), (Cons. 2), and

Proposition 2. Moreover, the number of links in (p, IDe)-influence-partial-star strategies

satisfies the bound given in the proof of Proposition 3 part 2.

�

Appendix A.3. Possibility of Interactions between Non-linked Agents

Proof of Proposition 4 Let PW (g) be the probability to obtain a winning network from g,

and PWi (g) be the probability that agent i satisfies (Cons. 1 & 2) after some links have been

formed by Nature. Note that PW (g) =
∏
i∈N P

W
i (g) since every agent has to satisfy (Cons.

1 & 2) in a winning network.

First, we provide a lower bound for the expected payoff associated with a network, say gmw,

which is a minimal winning network before Nature forms links. We have PW (gmw) =∏
i∈N P

W
i (gmw) ≥

∏
i∈N (1−ω)n = n(1−ω)n ≥ (1−ω)n

2
= ((1−ω)n)2 ≥ (1−nω)2 ≥

(1− cL
4 )2. The first inequality follows the fact that if Nature does not form any links, then the

realization of gmw is a winning network. The third and the last inequalities follow the assump-

tion that ω ≤ cL
4n and the fact that cL4n ≤

1
n . We conclude that PW (gmw) ≥ 1− 2 cL4 = 1− cL

2 .
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We now establish that De has no incentive to build a non-minimal winning network, gw, in-

stead of gmw. Recall that the set IDe is given. The difference between the expected payoff

of gw and gmw is bounded by: 1 − ]E(gw)cL − (1 − cL
2 − cL]E(gmw)) = (12 − (]E(gw) −

]E(gmw)))cL < 0 since ]E(gw)− ]E(gmw) ≥ 1.

Finally, we establish that De has no incentive to build a network, say g`, which is non-

winning before Nature forms links. For every agent i ∈ N for which (Cons. 1 & 2) do not

hold in g`, Nature has to form at least bi links in order to obtain agent i satisfies (Cons.

1 & 2) in a winning network gw. Let M(`) be the minimal set of links that allows g` to

be a winning network, i.e., there is no set of links with lower cardinality that allows to ob-

tain a winning network. Clearly, m(`) = ]M(`) ≥ 1. Similarly, let S(`) be the set of

agents that are involved in links in M(`). We have PW (g`) ≤
∑B

k=bi

(
B
k

)
ωk, with i ∈ S`

and where B = ]IDe − ]N 1
i (g`) . Note that

(
B
k

)
ωk = Bω (B−1)ω

2 . . . (B−k)ωk ≤ (Bω)k.

Moreover,
∑B

k=bi
(Bω)k = (Bω)bi (1−(Bω)

B+1−bi )
1−Bω ≤ (Bω)bi

1−Bω ≤
Bω

1−Bω since bi ≥ 1 and

Bω < 1. Since ω < cL
4n and B < n, Bω

1−Bω <
B
cL
4n

1−B cL
4n

≤ ncL
4n−ncL < cL

2 . We conclude

that PW (g`) ≤ cL
2 . We now compute the difference between the minimal expected payoff of

De with gmw and the maximal one with g`: 1− cL
2 − ]E(gmw)cL− ( cL2 − (]E(gmw)−m(`))

cL) > 1− cL −
(
n(n−1)

2 − 1
)
cL = 1− n(n−1)

2 cL ≥ 0.

�

Appendix B. Extensions

Appendix B.1. Reach Unanimity in Several Periods

Proof of Propostion 5 We prove successively, the two parts of the proposition.

1. Clearly, De cannot obtain that all agents vote 1 at the end of the process if she does not

influence at least one agent. Indeed, at t = 0, for every θi ∈ {0, ∅}, and v0i (θi) ∈ {0, ∅}.
By Equation (11), if at t − 1, for every i ∈ N , vt−1i (θt−1i ) ∈ {0, ∅}, then θti ∈ {0, ∅}
for every i ∈ N . By Equation (10), it follows that vti(θ

t
i) ∈ {0, ∅} for every i ∈ N .

Consequently, N (1,v) = ∅ 6= N .

2. (a) Suppose that De influences one agent and g is not connected. Then, network g

contains at least two distinct components. The previous reasoning can be repeated

for agents within the component where no agents have been influenced by De for

obtaining a contradiction. Consequently, g is connected, i.e., it contains at least

n− 1 links. It is sufficient to show that if De influences only one agent, say i, and

38



builds an acyclic connected network, then for every finite T , we haveN (1,v) 6= N .

Recall that kAd = n, so it is profitable for Ad to target each agent to ensure that

some of them do not vote 1 at T . Therefore,De’s strategy must prevent this specific

strategy of Ad from leading to a situation where some agents do not vote 1 in

a finite period. When Ad influences all agents, we have vti ∈ {0, 1} for every

t ≤ T . To establish a contradiction, suppose there exists a finite period T such that

N (1,v) = N . Then, at period t ≤ T , there are two agents jt and kt linked in

g who vote 1. Since jt and kt are linked in an acyclic network, there is a unique

path between i and jt and a unique path between i and kt. Moreover, d(i, jt; g)

is even if and only if d(i, kt; g) is odd. Since g is an acyclic connected network,

there are two distinct agents jt−1 and kt−1 respectively neighbors of jt and kt such

that vt−1
jt−1 = vt−1

kt−1 = 1. Clearly, d(i, jt−1; g) is even if and only if d(i, kt−1; g) is

odd. By reiterating this process, any period τ where there are two agents jτ and

kτ such that vt−1jτ = vt−1kτ = 1, with d(i, jτ ; g) is even if and only if d(i, kτ ; g) is

odd, requires that at period τ − 1, there are two agents jτ−1 and kτ−1 such that

vt−1
jτ−1 = vt−1

kτ−1 = 1, with d(i, jτ−1; g) is even if and only if d(i, kτ−1; g) is odd.

This process stops at t = 0 where such agents do not exist, a contradiction.

(b) Suppose that De builds a i1-triangle network and influences agent i1. As in the

previous point, we consider that Ad influences all the agents. At period 1, we

have V1i (g; 1) ≥ V0i (g; 1) for i ∈ {i1, i2, i3}. Consequently, at period t ≥ 2,

V1i (g; t) ≥ V0i (g; t), and vti = 1 for i ∈ {i1, i2, i3}. Next, by construction of the

triangle network, for agent at distance one of agent i1, `1 ∈ N \ {2, 3}, we have

V1`1(g; t) ≥ V0`1(g; t), for t ≥ 2 and vt`1 = 1 for t ≥ 3. By reiterating this argument

for agent `d at distance d of agent i1, we have V1`d(g; t) ≥ V0`d(g; t), for t ≥ d + 1

and vt`d = 1 for t ≥ d+2. Since the population of agents is finite and the network g

is connected, the distance between agent 1 and any other agent in the set N is also

finite. We conclude that the process that leads all agents to vote 1 is finite.

�

Appendix B.2. Ad Is the Stronger Influencer

We establish Propositions 7 and 8. First we begin with a lemma. Let Ni(g, IDe) be the set of

neighbors of agent i who are influenced by De. Recall that η =
⌈
α(kAd−1)
α− 1

2

⌉
.
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Lemma 5 Suppose that payoff functions of playersDe andAd are respectively given by Equa-

tions (3) and (4) and n is even. Let Ni(g, IDe) be optimal for De.

1. Suppose that (1− α)kAd ≤ 1
2 . If ]IDe ≥ d2αkAde+ 1, then

]Ni(g, IDe) =

{
d2αkAde if i ∈ IDe,
2kAd otherwise.

If ]IDe < d2αkAde+ 1, then ]Ni(g, IDe) = ∅.

2. Suppose that 1
2 < (1− α)kAd ≤ α. If ]IDe ≥ η + 1, then

]Ni(g, IDe) =

{
η if i ∈ IDe,
2kAd otherwise.

If ]IDe < η + 1, then Ni(g, IDe) = ∅.

3. Suppose that (1− α)kAd > α. If ]IDe ≥ η + 1, then

]Ni(g, IDe) = η, for every i ∈ N .

If ]IDe < η + 1, then Ni(g, IDe) = ∅.

Proof Note that if g is non-empty and IDe 6= ∅, then for every i ∈ N , ]Ni(g, IDe) > kAd,

otherwiseDe obtains a strictly negative payoff. Ad has two possibilities concerning the agents

he influences when he wants to obtain vi(θF
i ) = 0: either (i) he influences only the neighbors

of agent i, or (ii) he influences both agent i and his neighbors. We present successively the

case where Ad wants to obtain vi(θF
i ) = 0 for i ∈ IDe, and then for i /∈ IDe.

(a) Suppose that Ad wants to obtain vi(θF
i ) = 0 for i ∈ IDe. (i) When Ad influences

only the neighbors of agent i, De has to ensure that the following inequality holds:

1 − α + α
]Ni(g,IDe)−kAd
]Ni(g,IDe)

≥ 1/2. It follows that ]Ni(g, IDe) ≥ 2αkAd. (ii) When

Ad influences agent i and his neighbors, De has to ensure that the following inequality

holds: α
]Ni(g,IDe)

(]Ni(g, IDe)− kAd + 1) ≥ 1/2, that is ]Ni(g, IDe) ≥
α(kAd−1)
α−1/2 .

Consequently, vi(θF
i ) = 1 ⇔ ]Ni(g, IDe) ≥ max {η, 2αkAd}. We have η ≥ 2αkAd ⇔

(1− α)kAd ≥ 1
2 . It follows that

vi(θ
F
i ) = 1⇔

[
(1− α)kAd ≤

1

2
and ]Ni(g, IDe) ≥ 2αkAd

]
.

(b) Suppose that Ad wants to obtain vi(θF
i ) = 0 for i 6∈ IDe. (i) When Ad influences

only the neighbors of agent i, De has to ensure that the following inequality holds:
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]Ni(g,IDe)−kAd
]Ni(g,IDe)

≥ 1/2, that is ]Ni(g, IDe) ≥ 2kAd. (ii) When Ad influences both i and

his neighbors inequality α ]Ni(g,IDe)−kAd+1
]Ni(g,IDe)

≥ 1/2 holds, that is ]Ni(g, IDe) ≥ η. We

have η ≥ 2kAd⇔ (1− α)kAd ≥ α. It follows that

vi(θ
F
i ) = 1⇔ [(1− α)kAd ≥ α and Ni(g, IDe) ≥ 2kAd] .

Because α ∈ (1/2, 1], we have to examine three intervals for completing the analysis.

1. Suppose (1−α)kAd ≤ 1
2 . Then necessarily inequality ]Ni(g, IDe) ≥ 2αkAd holds when

Ad influences i ∈ IDe and inequality ]Ni(g, IDe) ≥ 2kAd holds when Ad influences

i 6∈ IDe. De has to choose the lowest number of neighbors of i which satisfies the

previous inequalities:

]Ni(g, IDe) =

{
d2αkAde if i ∈ IDe,
2kAd otherwise.

(15)

Note that when (1−α)kAd ≤ 1
2 , d2αkAde+1 ≥ 2kAd. If ]IDe ≥ d2αkAde+1, then (15)

holds. Otherwise, De cannot satisfy the necessary condition: ]Ni(g, IDe) ≥ d2αkAde
for i ∈ IDe.

2. Suppose 1
2 ≤ (1 − α)kAd ≤ α. Then necessarily inequality ]Ni(g, IDe) ≥ η holds

when Ad influences i ∈ IDe and ]Ni(g, IDe) ≥ 2kAd holds when Ad influences i 6∈
IDe. De has to choose the lowest number of neighbors of i which satisfies the previous

inequalities:

]Ni(g, IDe) =

{
η if i ∈ IDe,
2kAd otherwise.

(16)

Note that when (1 − α)kAd ≥ 1
2 , η + 1 ≥ 2kAd. If ]IDe ≥ η + 1, then (16) holds.

Otherwise, De cannot satisfy the following necessary condition: ]Ni(g, IDe) ≥ η for

i ∈ IDe.

3. Suppose (1− α)kAd > α. Then necessarily inequality ]Ni(g, IDe) ≥ η holds when Ad

influences i ∈ IDe or when Ad influences i 6∈ IDe. De has to choose the lowest number

of neighbors which satisfies the previous inequality:

]Ni(g, IDe) = η. (17)

If ]IDe ≥ η + 1, then (17) holds. Otherwise, De cannot satisfy ]Ni(g, IDe) = η for

i ∈ IDe.

41



�

Proof of Proposition 7 The proof is straightforward from Lemma 5. Indeed for every value of

kAd, Lemma 5 provides a necessary condition for the value of ]Imin
De :

1. If (1− α)kAd ≤ 1
2 , then there is a winning strategy if ]Imin

De = d2αkAde+ 1;

2. if 1
2 < (1− α)kAd ≤ α, then ]Imin

De = η + 1;

3. if (1− α)kAd > α, then ]Imin
De = η + 1.

�

Proof of Proposition 8 Due to Proposition 7, we know the minimal size of ]IDe for a win-

ning strategy, ]Imin
De . It follows that because of the convexity in each of its two arguments

of the cost function, in a winning strategy, ]IDe ∈ J]Imin
De , nK. Moreover, by Lemma 5,

we know conditions that a winning strategy has to satisfy. Clearly, when (1 − α)kAd ≤ 1
2 ,

(d2αkAde, 2kAd, ]IDe)-groups-regular network strategies, with ]IDe ∈ J] Imin
De , n − 1K, and

d2αkAde-regular network strategies allow to satisfy conditions given in Lemma 5 and mini-

mize the number of links given the size of IDe. Similarly, by using Lemma 5, we obtain the

two other parts of the proposition. Note that the only two types of strategies candidate for be-

ing optimal are (η, η, IDe)-groups-regular network strategy where ]IDe ∈ J]Imin
De , n− 1K, and

η-regular network strategies. Obviously, the number of links in all these networks is the same,

since the degree of each agent in each of these networks is η. Consequently, only
(
η, η, Imin

De

)
-

groups-regular network strategies are optimal for De since the number of agents influenced by

De is minimal. �
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